2001 October 28 Unified Algebra 0

Unified Algebra

Eric C. R. Hehner
University of Toronto

Introduction

Mathematics has evolved. Bits of it are created by many people over time. The parts that survi
are sometimes the best parts, and sometimes not. Sometimes the survival of a mathematical ide
notation has more to do with the personality of its creator than with its merit. Evolution tends t
create complexity. Often there are a variety of notations that serve the same purpose (createc
different people at different times) all in use in one paper. Occasionally it seems worthwhile to tr
to design mathematics, rather than just to evolve some more. When we design, we can strive
simplicity, which evolution never produces. When we design, we evaluate, keeping what i
useful, unifying what is similar.

| present a unified algebra that includes what are commonly called boolean algebra, numb
algebra, sets, lists, functions, quantification, type theory, and limits. | present the notations ar
the rules for the conduct of algebra, but it is not the purpose here to explore the possibilities f
their use. | am laying foundations, not building upon them; | am designing the instrument, nc
playing the music. To appreciate the instrument, which is the algebra | present, | rely on th
reader’'s experience in using algebra. For motivations, justifications, and commentary, | refer tt
reader to [1]. The viewpoint | adopt throughout is formalist.

The algebra is presented from the very beginning, leaving out nothing. That makes parts of tl
presentation very basic, and for some readers, boring. But other readers may appreciate the ¢
and effort required to design a simple and general algebra. | begin with boolean algebra, renan
“binary algebra”, and its two extremes are renamed “top” and “bottom”. That's the only new
terminology. By contrast, the standard terminology that | won't be using includes: boolean, trut
false, proposition, sentence, term, formula, conjunction, conjunct, disjunction, disjunct
implication, implies, antecedent, consequent, axiom, theorem, lemma, proof, inferenct
entailment, syntax, semantics, valid, predicate, quantifier, quantification, universal, existentia
and existence. | consider symbols and terminology to be a cost, not a benefit, when definir
mathematical structures. Unified algebra gives us much more mathematics for less cost than ust

Algebra

We will soon introduce binary algebra, ternary algebra, number algebra, the algebra of some d:
structures, and function algebra. In this section we say what is common to all of them.

Order of Evaluation

An algebra consists of expressions, and the expressions consist of operators and operai
Placing operators between operands makes some expressions ambiguous. For examgle, 2+
might mean that 2 and 3 are added, and then the result is multiplied by 4, or that 2 is addec
the result of multiplying 3 by 4 . To say which is meant, we can use parentheses: eith
(2+3x4 or 2+(34) . To prevent a clutter of parentheses, we decide on an order of evaluatior
Here is the order of evaluation of all operators in this paper.

2001 October 28 Unified Algebra 1

0 constantsT L O 1 3.14 andsoon
variables x y and so on
bracketed expressions () {} [[within which the order of evaluation again applies

1 juxtaposition fx left to right

2 prefix — ¢ $ ~2 D # - 00O =% 8§ + x right to left
infix - right to left
subscript x, superscriptxn right to left

3 infix x / O O left to right

4 infix + —+ A v left to right

5 infix , ,.. * ; .| 4>

6 infix = £ < >< > : 0

In the order of evaluation, infix + can be found on level 4, and ifon level 3; that means, in
the absence of parentheses, evaluate infibefore infix +. The example 2#8 therefore
means 2+(84) . Within levels 1, 3, and 4 evaluation is from left to right. Within level 2,
evaluation is from right to leftx=y=z means X=y)[(y=z) and similarly for the other operators
and mixtures of operators on level 6.

Format

To help the eye group the symbols properly, it is a good idea to leave space for absent parenthe
The spacing in expression 2 #43is helpful; the spacing in 2+34 is misleading.

An expression that is too long to fit on one line must be broken into parts. There are sever
reasonable ways to do it; here is one suggestion. A long expression in parentheses can be brc
at its main operator, which is placed under the opening parenthesis. For example,

(first part

+ second part)
A long expression without parentheses can be broken at its main operator, which is placed unc
where the opening parenthesis belongs. For example,

first part

= second part

Attention to format makes a big difference in our ability to understand a complex expression.

Expressions and Values

An algebra consists of expressions, which are used to express values in the application domg
For example, the values may be amounts of water, or voltage, or frequency of vibration, or gui
and innocence. We must never use an expression to express more than one value; to do so w
be a serious error called inconsistency. Sometimes we may not say what value an express
expresses; that is called incompleteness. For example, we will not be able to determine the va
of 0/0. (I prefer to avoid the question of whether 0/0 has no value, or has a value but we canr
say what it is. It is of no interest whether an expression expresses a value if we cannot determ
the value.) Here are four definitions.

Consistency: at most one value can be determined for each expression
Completeness: at least one value can be determined for each expression
Expressiveness:at least one expression can be determined for each value
Unigqueness: at most one expression can be determined for each value

2001 October 28 Unified Algebra 2

Consistency is essential; completeness is not. Expressiveness is desirable; uniqueness is not.

As an economy of speech, we say “ 2+3 has value 5" to mean “ 2+3 has the same value a
has”, or “expression 2+3 expresses the same value as expression 5 expresses”.

Variables and Instantiation

A variable is a kind of expression. In this paper we use single italic letters likog variables

(but that's not a principle of unified algebra). Expressions represent values, and a variab
represents an arbitrary value. A variable can be replaced by another expression. Replacin
variable by another expression is called instantiation. Expression —2 is called an instance
expression x. Here is how instantiation works.

* We sometimes have to insert parentheses around expressions that are replacing variable
order to maintain the order of evaluation. Expression —(2+3) is an instange btt—2+3
iS not.

* When the same variable occurs more than once in an expression, it must be replaced by
same expression at each occurrence. Expression 2+2 is an instamge btit 2+3 is not.
However, different variables may be replaced by the same or different expression
Expression 2+2 is an instanceofy .

Evaluation Rules

Here are the rules to determine the value of expressions.

Direct Rule An expression may be given a value by physical means, or by other mean:
outside the algebra. This is the way an algebra is applied.

Example: By marking numbers along a stick we give them length values.

Example: We might decide to usé to express truth and to express falsity.

Indirect Rule An expression may be given a value by saying that it has the same value a
another expression whose value is already known. This rule is used in twc
forms: value tables, and laws.

Example: In binary algebra, on one of the value tables, from the row labellgd and
the column labelledl T , we will see thaf T has valueT .
Example: From the first of the common laws, we will see tkak has valueT .

Completion Rule If the values of some subexpressions of an expression are unknown, and a
ways of assigning them values give it the same value, then it has that value.

Example: In binary algebra, we will see from the value tables #iatx has valueT .

Example: In binary algebra, we will see from the value tables ttiatx has valuel .

Consistency Ruldf it would be inconsistent for an expression to have a particular value, then it
has another value. More generally, if it would be inconsistent for several
expressions to have a particular assignment of values, then they have anoth
assignment of values.

Example: In binary algebra, we will see from the value tables that if botland x<y

2001 October 28 Unified Algebra 3

have valueT , then so hay .

Example: In binary algebra, we will see from the value tables thatxf has valueT ,
then x has valuel .
Example: In binary algebra, we will see from the value tables thaty has valueT ,

then x andy have the same value, andxty has valuel , then x andy
have different values.

Transparency Ruken expression does not change value when a subexpression is replaced t
another with the same value.
Example: If x andy have the same value, themz and y+z have the same value.

Instance Rule If the value of an expression can be determined, then all its instances have the
same value.
Example: Since x=x has valueT , thereforex + yxz = x + yxz has valueT .

Using the Direct Rule, we apply an algebra, and that gives its symbols an interpretation. Suppc
we apply binary algebra by giving both and L the same value. Althougfi+1 is a law, we
cannot say thafl and L have different values. If we mark numbers on a stick in random places,
then we cannot interpret = as “same, as “different”, and > as “greater”. For the rest of this
paper, we assume that and L have different values, and that numbers are marked in the
traditional way, so that =+, >, and all the other symbols have their traditional interpretation.

Binary Algebra

The expressions of binary algebra are called binary expressions. Binary expressions can be u
to represent anything that comes in two kinds, such as true and false statements, high and |
voltage, satisfactory and unsatisfactory computations, innocent and guilty behavior. In an
application of binary algebra, the two things being represented are called the “binary values”. Fi
example, in one application the binary values are truth and falsity; in another they are innocen
and guilt. Binary expressions include:

T “top”

1 “bottom”

—X ‘negatex”

X=y “x equaly”

X*Yy “x differ y”

X<y “X belowy”

x>y “ X abovey”

Xy “ x below equaly ”

Xy “ x above equaly”

xOy “x min y”; the top of the symbol is narrow; the symbol doesn't hold water
Xy “x maxy”; the top of the symbol is wide; the symbol holds water
Xay “X neg miny”

Xvy “ X neg maxy”

xdyb>z “x if y elsez”

The two simplest binary expressions areand 1 . ExpressionT represents one binary value,
and expressionL represents the other. In the other binary expressions, the varkgblesand

z may be replaced by any binary expressions. Whichever value is represented by expression
expression x represents the other value. This rule can be shown with the aid of a value table.

2001 October 28 Unified Algebra 4
X T 41
~x i 7

This table says that T- represents the same value thatrepresents, and thatL—represents the
same value thall represents. We can similarly show how to evaluate other binary expressions.

xy [JTT TL 1T 11

x=y J T 1 L1 T
x«y J L T T L
x<y 1 1 T 1
x>y 1 T L1 1L
x<y U T L1 T T
xey U T T L T
xy T 1 1 1
xy UT T T 1L
xoy 1L T T T
xey 1 1 L T

xyz [JTTT TTL TLT TLll LTT LTL 11T LIl
x<ay>z [T T T 1 1 L T 1

Preference

We have two binary values, and so far we have not shown any preference for one over the oth
Now we shall show a preference for expressions with the same vallie asfour ways. One

way is to abbreviate the statement “Expressiorhas valueT .” by just writing x , without
saying anything about it. Whenever we just write a binary expression, we mean that it has vali
T (expresses the same value thiat expresses). For example, instead of saying “Expression
T=T has valueT .” we just say “T=T ".

Another way we show a preference is by the use of the words “solution” and “law”. A solution tc
a binary expression is an assignment of values to its variables that gives it the same Vajue as
we have no name for an assignment that gives it the same valde.a®\ law is a binary
expression for which any assignment of values to its variables gives it the vglaad so by the
Completion Rule it too has valué ; we have no name for a binary expression that has \value

We often use the Indirect Rule by stating that an expression is a law, which means we a
assigning it the same value ds. If we want to assignl 's value to expression , instead we
state the law », and then rely on the Consistency Rule to say thdtas value L . In other
algebras, if we want to say that has the same value 3s (not a binary value), instead we say
that x=y has valueT Dby stating thatx=y is a law.

The final way we show a preference is in the applications of binary algebra. When we apply it t
reasoning, we choose to uske for true statements and for false statements. When we use
binary expressions as specifications, we choose toTuséor satisfactory objects, and. for
unsatisfactory objects. When we use binary expressions to codify laws, we choosd tdarse
innocent behavior and. for guilty behavior. In each case we could just as well have chosen to
use T and 1 the other way round, but the tradition is to usefor the preferable alternative.

2001 October 28 Unified Algebra 5

Ternary Algebra

Between the two values representedbyand L , we now consider a third value, represented by
0 (pronounced “zero”). Ternary algebra can be applied to anything that comes in three kinds.
one application, the three expressiohs, 0, andl represent the values “yes”, “maybe”, and
“no”. In another, they represent the values “large”, “medium”, and “small”’. An assignment of
values to variables that gives an expression the value 0 is called a “root” of the expression.

The expressions of ternary algebra, called “ternary expressions”, include all those of binai
algebra. To determine the value of these ternary expression, we extend the value tables.

x [J] T 0 1
~x L 1 o T

Xy [J] TT TO TL OT 00 OL 1T 10 Ll

x==ylJ T L L L T L L1 1 T
x¢«y[J L T T T 1 T T T 1
X<y 1 1 1 T L L T T 1
x>y 1 T T 1 1L T L1 L 1
X<y T L 1L T T L T T T
x>y (] T T T L T T L1 L T
xyl T o L o0 o L 1 1 1
xyl T T T T o o T o 1
XAy 1 o T o o T T T T
Xvy 1 1 1 1 o o L o T

When the variables have binary values, each expression has the same value as it had in bir
algebra; in that sense, we have extended binary algebra to ternary algebra in a consistent way.
our future extensions will likewise be consistent. The expressiéx is a law of binary algebra
because both assignments of binary values to varialiéve it the valueT ; but it is not a law of
ternary algebra because whgnhas value 0 x(3-x has value 0. The expressiar—x has no
solution in binary algebra because both assignments of binary values give it thelvalue
ternary algebra its solution is 0. By extending the algebra, we have lost some laws, but gain
some solutions.

We can add many new ternary expressions. For example, we can add approximate equality ¢
addition modulo 3 with the value table:

xy [J] TT TO TL OT 00 oL LT 10 L1l

<yl T o L 0 0o 0 L o T
xay[l L T o T o L o L T

but we do not pursue ternary algebra further. We could now pursue a four-valued algebra, or fiv
valued algebra, but instead we leap to an infinite-valued algebra. Value tables, which are alrea
becoming cumbersomexyr>z takes 27 columns in ternary algebra), become impossible with
infinitely many values, so from now on we give values to new expressions by stating laws.

2001 October 28 Unified Algebra 6

Common Laws

We are about to introduce numbers, bunches, sets, strings, lists, and functions. We introdu
each of them by saying how to write them and giving their laws. Some of the laws are common
all of them as well as to binary and ternary expressions, so we present them once. They are:

X=X reflexivity
x=y) = =x) symmetry
(x=y) O(y=2) = (x=2) transitivity
(x+y) = —(=Y)

—(X<x) irreflexivity
—((x<y) U (y<x)) antisymmetry
(x<y) 0 (y<2) = (x<2) transitivity
(X<y) = (=x>-y) reflection
—((x<y) O (x=y)) exclusivity
(x<y) = K<y) O(x=y) inclusivity
(y) = <x) mirror

(2y) = (=x) mirror

(xsy) = Xy =x) = (xCy =)

xay = —Ly)

xvy = L)

- X=X self-inverse
x<4aTPy) =x

(xdalby) =y

Xty = yLx symmetry
XLy = yLx symmetry
XAy = yAax symmetry
Xvy = yvX symmetry
(xy)lz = xt(yLz) associativity
(xy)lz = xU(yL2) associativity
XX = X idempotence
XX = X idempotence

X[z < (xOy) O(~yz) = x~y) O(ylz) < xz resolution

The following laws show how — distributes over other operators, or can be factored out.

—(x=y) = (X*) —(x*y) = (X=-y)
—(x<y) = (xX=y) —(xgy) = (X<-y)
—(x>y) = (x=2-y) -(x2y) = (x>-y)
() = xO-y ~(xy) = XDy
—(xay) = xv -y —(xvy) = X2~y

—(x<Ayr2z) = xAy>-z

It is an interesting mathematical exercise to find a minimal set of laws for an algebra. But thos
who wish to use the algebra need to know many laws, and to them minimality is of no concern.
this paper, no attention has been paid to minimality.

2001 October 28

Number Algebra

Unified Algebra 7

We now fill in the spaces betweent , 0, and L . All operators apply to all values. The

ordering places thd and L values at the extremes, with all the other values in between.
l..-83-2-10123.T

(In this paper, | consider only real numbers, not complex numbers.)

The expressions of number algebra are called number expressions. Number expressions cal
used to represent anything that comes in various quantities, such as apples andTwater (
represents an infinite quantity, antl represents an infinite deficit). Expressions are formed as
follows.

any sequence of one or more decimal digits, such as 5296

any of the ways of forming an expression presented previously, such as

—5296 or 5296375 or 5297=375

X+y “X plusy”

X=y “X minusy”

Xxy “Xx timesy”

xly “x divided byy”, “ x overy”
XY “ X to the powery”

Anyone is welcome to invent new expressions and add them to the list.

Now that we have new expressions, we assign some of them the same valudrathese laws,
d is a sequence of digits.

do+1 =d1 counting
dl+1 =d2 counting
d2+1 =d3 counting
d3+1 =d4 counting
d4+1 =d5 counting
d5+1 =d6 counting
d6+1 =d7 counting
d7+1 =d8 counting
d8+1 =d9 counting
do+1 = @+1)0 counting
x+0 =x identity

Xty = y+X symmetry
X+(y+2) = (x+y)+z associativity
(L<x<T) € ((x+y = x+2) = (y=2)) cancellation
(L<x) < (T+x=T) absorption
(x<T) =< (L+x=1) absorption
X +ylz = (x+y) O (x+2) distributivity
x+yllz = (x+y) O (x+2) distributivity
X+ (yr2) = k) O(X-2)

X+ vz = xy) O(XxX-2

X+ (ydzbw) = x+ty<dz D x+w distributivity
—X = 0—x

—(X+y) = X + -y distributivity
—(Xy) = X—-~y distributivity

—(xxy) = (X)xy
—(xly) = (X)ly

associativity
associativity

2001 October 28 Unified Algebra 8

x=y = —(y—x) antisymmetry

Xy =x+-y

X+{y—-2 = k+y)-z associativity

(L<x<T) £ ((x~y =x-2) = (y=2) cancellation

(L<x<T) < (xx=0) inverse

xX<T) < (T—x=T) absorption

(L<x)s(L—x=1) absorption

(L<x<T) < (xx0 = 0) base

xx1 =X identity

XXy = yxX symmetry

xx(y+2z) = xxy + Xxz distributivity

xx(yxz) = (Xxy)xz associativity

(L<x<T) O (x*0) < ((xxy =xx2) = (y=2)) cancellation

(O<x) < (xxT =T) absorption

(Oxx) < (xxL =1) absorption

x/1 =x identity

(L<x<T) O(x*0) < (x/x = 1) inverse

xx(y/z) = (xxy)/z associativity

(L<x<T) < (T =0=x/1)

(L<x<T) =< (x0=1) base

X1 =X identity

XY+Z = XYxXZ

Xy*Z = (Xy)Z

1<0<1<T direction

(L<x<T) € ((x+y < x+2) = (y<2)) cancellation, translation

(0<x<T) < ((xxy <xx2) = (y<2)) cancellation, scale

(x<y) O (x=y) O (x>y) trichotomy

1l<x<T extremes
Calculation

Given an expression, it is often useful to find a simpler expression with the same value. Fc
example,

xx(z+1) —yx(z—1) —zx(x-y) distribute
= (xxz + xx1) — (yxz —yx1) — @@xx — zxy) unity and double negation
= XXZ + X —YyxZ +Yy —ZxX + Zxy symmetry and associativity
= X +y + (XxZ —xx2) + (yxz —yx2) zero and identity
= X+y

The entire five lines (without the hints that appear to the right) form one binary expression meanin
(xx(z+1) —yx(z-1) —=zx(x=y) = (xz +xx1) — [yxz —yx1) — @xX —2xy))

O ((xxz + xx1) — yxz—yx1) — @xX —2Zxy) = XxZ+ X —yxZ +Y —ZxX + Zxy)
0 (XxZ+X —yxzZ+y —2zxX +Zxy = X +Y + (XxZ —Xx2) + (yxZ —yx2))
O (X +y + (Xxz2 —xx2) + (YxZ—yxZ) = X+Y)

By simply writing it, we are saying that it has valde. The hint “distribute” is intended to make
it clear that
Xx(z+1) —yx(z-1) —zx(x-y) = Kxz+xx1) — (yxz—yx1) — [xx —2zxy)
has valueT ; the hint “unity and double negation” is intended to make it clear that
(XxZ + xx1) — (yxz —yx1) — @xX —2xy) = XxZ + X —yxZ +Yy —2ZxX + Zxy
has valueT ; and so on. By the transitivity of = and the Consistency Rule we see that

2001 October 28 Unified Algebra 9

Xx(z+1) —yx(z-1) —2x(x-y) = Xty
has valueT , and soxx(z+1) —yx(z-1) —zx(x-y) and x+y have the same value.

We can use operators other than = down the left side of a calculation, even a mixture, as long
there is transitivity. For example, ¥ is a real-valued variable,

xx(X + 2) distribute
= X2 + 2xX identity and zero
= X2+ 2xx+1-1 factor
= (x+1)2-1 a square is nonnegative
> -1

tells us thatxx(x+2) = -1 has valueT .

The level of hint depends on the knowledge of the intended audience. A hint may refer to son
laws, or to a calculation done elsewhere, or to some missing steps that a knowledgeable rea
could reasonably be expected to supply.

Variation
One effective way of calculating is to increase or decrease an expression by increasing

decreasing a subexpression. We can increaseg by increasingy . We can increase x—by
decreasingx. As an example, led and b be binary.

a s (avb)
= —(a O—(alo)) decreasealb to a and so decrease the whole expression
> —(al-a) use a previous example
= -1
= T

And so a ~ (avb) has a value that is above or equalltq and since there is nothing above,
its value is T .

Here is a catalogue of variations for use in calculations.
—X varies inversely withx .
x+y varies directly withx and directly withy .
x-y varies directly withx and inversely withy .
Xy varies directly withx and directly withy .
xLy varies directly withx and directly withy .
XAy varies inversely withx and inversely withy .
xvy varies inversely withx and inversely withy .
x<y varies inversely withx and directly withy .
x>y varies directly withx and inversely withy .
x<y varies inversely withx and directly withy .
x2y varies directly withx and inversely withy .
x<1yl>z varies directly withx and directly withz.

Context

Consider an expression of the forrily where x andy are binary. When we are simplifying
X, we can suppose that has valueT . If y really does have valu@ , then we have done
nothing wrong. Ify has valuel , then x(ly has valuel no matter which valu has; so no
matter how we change& , we don't change the value afly . For exactly the same reason, we

2001 October 28 Unified Algebra 10

can suppose that has valueT when we are simplifyingy . However, we cannot make both
suppositions simultaneously and simplify bothand y at the same time. (If we could, thehx
could be simplified toT .)

Here is an example.

(X+xxy+y=5) 0 X—xxy+y=1) subtract and add x&xy
(x=xxy +y+ 2xxxy =5) [0 (x—xxy+y=1) use second part to simplify first
(L +2xxy=5) 0 x—xxy+y=1) simplify
(2xxxy =4) O X—xxy +y=1) simplify
(xxy=2) 0 Xx—xxy+y=1) use first part to simplify second
(xxy=2) O x—-2+y=1) simplify
(xxy=2) 0 (x+ty =3)

(x=1) U (y=2)

LAV | T I | A TR |

We can generalize this sort of reasoning to apply to number expressions.
In X<y, when simplifying x , we can supposg* L ;
when simplifying y , we can supposg+T .
In x>y, when simplifying x , we can supposg=T ;
when simplifying y , we can supposg&+ 1 .
In Xy, when simplifying x , we can supposg=T ;
when simplifying y , we can supposg+ 1 .
In xxy, when simplifying x , we can supposg* L ;
when simplifying y , we can supposg+T .
In xOy, when simplifying x , we can supposg=+ 1 ;
when simplifying y , we can supposg+ 1 .
In xOly , when simplifying X , we can supposg=T ;
when simplifying y , we can supposg+T .
In xay , when simplifying x , we can supposg* 1L ;
when simplifying y , we can supposg+ 1 .
In xvy , when simplifying x , we can supposg=T ;
when simplifying y , we can supposg+T .
In x<1y>>z, when simplifying x , we can supposg=+1 ;
when simplifying z, we can supposg+T .

Data Structures

A data structure is a collection, or aggregate, of data. The kinds of structuring we consider a
packaging and indexing. These two kinds of structure give us four data structures.
unpackaged, unindexed: bunch

packaged, unindexed: set

unpackaged, indexed: string

packaged, indexed: list
Bunches

A bunch represents a collection of objects. For contrast, a set represents a collection of objects i
package or container. The contents of a set is a bunch. These vague descriptions are made pr¢
as follows.

2001 October 28 Unified Algebra 11

Any binary or number (and later also set, string of elements, and list of elements) is an elemente
bunch, or element. For example, the number 2 is an elementary bunch, or synonymously,
element. Indeed, every expression is a bunch expression, though not all are elementary.

If A and B are bunches, then

A,B “A union B”
A‘'B “ A intersectionB”
are bunches,
CA “size of A”
is a number, and
A: B “Alisin B”,“ A isincluded inB”

is a binary expression.

The size of a bunch is the number of elements it includes. Elements are bunches of size 1.

¢2 =1

¢, 2,59 = 4
Here are three quick examples of bunch inclusion.

2. 0,259

2. 2

2,9: 0,259
The first says that 2 is in the bunch consisting of 0, 2,5, 9. The second says that 2 isint
bunch consisting of only 2 . Note that we do not say “a bunch contains its elements”, but rathi
“a bunch consists of its elements”. The third example says that both 2 and 9 arein 0, 2, 5,
or in other words, the bunch 2, 9 isincluded in the bunch 0, 2,5,9 .

Here are the bunch laws. In these lawsandy are elements (elementary bunches), and,
and C are arbitrary bunches.

xy = &=y elementary law
xAB) = kA OXB) compound law
AA=A idempotence
AB=BA symmetry
A,(B,C) = (AB),C associativity
A'A=A idempotence
A'‘B=B'A symmetry
A(B'C)=(A'B)C associativity
(AB:C) = AC O @B:C

(A:B'C) = AB) OAC

A:AB generalization
A'B: A specialization
A A reflexivity
(A:B) O B:A) = (A=B) antisymmetry
(A:B) 0 B:C <= (AAC transitivity
tx=1

¢(A,B) + ¢C(A'B) = ¢A + ¢B
- A < (¢CA'X)=0)
(A:B) < (¢A<¢B)

For other laws see [2].

Here are several bunches that are useful enough to be named:

2001 October 28 Unified Algebra 12

null the empty bunch
bin = T,1 the binary values
nat = 0,1, 2, ... the natural numbers
int = ..,-2,-1,01, 2, .. the integer numbers
rat = 0, -1, 2/3, ... the rational numbers
real the real numbers

We define them formally in a moment.

The operators , ‘ ¢ : %= <> apply to bunch operands according to the axioms already presented
Other operators can be applied to bunches with the understanding that they apply to the element:
the bunch. In other words, they distribute over bunch union. For example,

—ull = null
-(A,B) = A B
A+null = null

A+(B, C) = A+B, A+C
This makes it easy to express the positive naturalt+{) , the even naturalsnétx2) , the
squares r(a®) , the powers of two (2t , and many other things.

We define the empty buncimull , by the laws
null: A
(CA=0) = A=null

The bunchbin is defined by the lavbin=T, L .

The bunchnat is defined by two laws.

0, nat+1: nat construction

(0,B+1:B) < (nat B) induction
The first, construction, says that 0, 1, 2, and so on, amatn The second, induction, says that
nothing else is innat by saying that of all the bunches satisfying the constructionaivjs the
smallest. Now that we hawveat, we can definant and rat as follows:

int = nat, —nat

rat = int/(nat+1)
The law definingreal will be given later in the section titled “Limits”.

We also use the notation

m,..n “mton”
where m and n are integer or binary anth<n . For integerm and n, this notation means the
bunch m, m+1,m+2, ...,n—1 . The asymmetric notation is a reminder that the left end is included
but the right end is excluded. Its law is

(x:m,..n) = & int) OO (mgsx<n)
For example,

0,3 =0,1,2

0,..0 =null

¢(m,..n) = n—-m

2001 October 28 Unified Algebra 13

Sets

Let A be any bunch (anything). Then

{A} “set containingA”
is a set. Thus Hull} is the empty set, and the set containing the first three natural numbers i<
expressed as {0, 1, 2} or as {0,..3}, andaf is the set of natural numbers. All sets are
elements; not all bunches are elements; that is the difference between sets and bunches. We
form the bunch 1, {3, 7} consisting of two elements, and from it the set {1, {3, 7}} containing
two elements, and in that way we build a structure of nested sets. Set formation has an inverse
S is any set, then

~S “contents of S”
is its contents. For example,

~{0,1} = 0,1
Now that we have bunches, the laws of sets are very easily stated.

{A} £ A structure

~{A} = A contents

#{A} = CA size

(Ae{B}) = (A:B) elements

{A} ={B}) = (A:B) subset

{A} e AB}) = (A:B) powerset

{A} O{B} = {A, B} union

{A} O{B} = {A'B} intersection

{A}={B}) = (A=B) equation

Note that the element, subset, and powerset laws are all just bunch inclusion.
Strings

Just as bunches and sets are, respectively, unpackaged and packaged collections, so strings
lists are, respectively, unpackaged and packaged sequences. There are sets of sets, and lis
lists, but there are neither bunches of bunches nor strings of strings.

The simplest string is

nil the empty string
Any binary, number, set (and later also list and function) is a one-item string, or item. Fo
example, the number 2 is a one-item string, or item. A bunch of items is also an item. String
are catenated (joined) together by semicolons to make longer strings. For example,

4:2:4:6
is a four-item string. The length of a string is the number of items, and is obtained by the
operator.

$(4;2;4,6) = 4

The index of an item is the number of items that precede it. In other words, indexing is from 0
An index is not an arbitrary label, but a measure of how much has gone before. Your life begins
year 0, a highway begins at mile 0, and so on. We refer to the items in a string as “item O
“‘item 1”, “item 2", and so on; we never say “the third item” due to the possible confusion betweel
item 2 and item 3. We obtain an item of a string by subscripting. For example,

(3;5;7,9 =7
In general, S, isitem n of string S. We can even pick out a whole string of items, as in the

2001 October 28

following example.
(3,5, 7,9 1,2= 7;5 7

Unified Algebra 14

Strings can be compared for equality and order. To be equal, strings must be of equal length, ¢
have equal items at each index. The order of two strings is determined by the items at the fii

index where they differ. For example,

3:6:4:7 < 3:7:2

If there is no index where they differ, the shorter string comes before the longer one.

3:6;4 < 3:6:4;7

This ordering is known as lexicographic order; it is the ordering used in dictionaries.

Here is the syntax of strings. ifis an item, andS and T are strings, then

nil
[
ST
Sr
ST
ST

are strings, and
$S

is a natural number of , and
ST
ST
ST
ST
T
ST

are binary.

the empty string
an item

“ S catenateT ”
“SsubT”
“SmnT”
“SmaxT”

“length of S”

“S equalsT”

“ S differs fromT"”

“ S isless thanl”

“ S is greater tharT ”
“ S is at mostT”
“Sis atleastT”

Here are the laws of string algebra. In these la®s,T , and U are strings, and and j are

items.
nil;S = Snil =S
SMmuU)=8TmMu
$nil = 0
$i =1
$ST) = $S+ 9T
(Si;Tgs =1
Stu) = Gy

(i) = i, T=8j;T
(i) < §i;T<Sj;V)
nill < S<Si;T

We also use the notation
X;..y

Shun = null
Sru =S,
1 = {Si}
Shit = nil
Sru =S

“X toy” (same pronunciation as,..y)

where x and y are integers or binary ankky . As in the similar bunch notatior, is included

and y excluded, so that
$(x;.y) = y—x
Here are the laws.
X;.X = nil

2001 October 28 Unified Algebra 15

X;. Xx+1 =X
x.y) ; ¢;.2 = x..z

String catenation distributes over bunch union:
A; null; B = null
(A,B); (C,D) = AC,AD,BC,B,D
So a string of bunches is equal to a bunch of strings. Thus, for example,
0; 1; 2: nat 1; (0,..10)
because Onat and 1:1 and 2:0,..10 . A string is an element (elementary bunch) just when al
its items are elements; so 0;1;2 is an elementphttl; (0,..10) is not.

Our main purpose in presenting string algebra is as a stepping stone to the presentation of
algebra.

Lists

A list is a packaged string. For example,

[0; 1; 2]
is a list of three items. List brackets [] distribute over bunch union.

[null] = null

[A, B] = [A], [B]
Because of the distribution we can say

[0; 1; 2]: [nat 1; (O,..10)]
On the left of the colon we have a list of integers; on the right we have a list of bunches, ¢
equivalently, a bunch of lists. A list is an element (elementary bunch) just when all its items ar
elements; [0; 1; 2] is an element, bua@f 1; (0,..10)] is not.

Here is the syntax of lists. L& be a string,L and M be lists,n be a natural number, and
be an item. Then

[9 “list containing S”
LM “LM” or “L composed withM ”
L+M “ L catenateM ”
n-i|L “n maps toi otherwiselL ”
LOM “L minM”
LOM “L maxM”
are lists,
Ln “Ln” or “L indexn”
is an item,
#L “length of L~
is a natural number or binary, and
L=M “L equalsM”
L+M “ L differs from M ”
L<M “L isless thanM”
L>M “L is greater tharM ”
L<M “L is at mostM ”
L=M “L is atleastM ”
are binary.

Parentheses may be used around any expression, so we may(nyritié the index is not simple,

2001 October 28 Unified Algebra 16

we will have to enclose it in parentheses. When there is no danger of confusion, we may write
without a space between, but when we use multicharacter names, we must put a space betweer

The length of a list is the number of items it contains.
#[3;5;7;4] = 4
List indexes, like string indexes, start at 0 . An item can be selected from a list by juxtaposin
(placing next to each other) a list and an index.
[3;5;7;4]12 = 7
A list of indexes gives a list of selected items. For example,
[3:5,7,4][2,1,2] = [7,5,7]
This is called list composition. List catenation is written with a small raised plus sign
[3;5,7;4F[2; 1, 2] = [3;5;7;4; 2, 1; 2]
The notationn-i |L gives us a list just likd. except that iterm is i .
2-22][10;..15] = [10; 11; 22; 13; 14]
2-22|3-33|[10;..15] = [10; 11; 22; 33; 14]
Let L = [10;..15]. Then
2-1L3|3-L2|L = [10; 11; 13; 12; 14]
The order operators <>=> apply to lists; the order is lexicographic, just like string order.

Here are the laws. LeéB and T be strings, and let andj be items.

#g = $S length
[SHT] = [ST] catenation
[T =S indexing
[Sr] = §7

[S[T] = [S] composition
$9 - il[SiT = [Si;T] modification
(S=[1) = S=T) equation
((I<[m) = 6<M order

Let L, M, and N be lists, andn be natural. Then
(LM)n =L (Mn)
(LM)N =L(MN) associativity
L(M*N) =LM+LN distributivity

When a list is indexed by a structure, the result will have the same structure. Here is a fan
example. LetL =[10; 11; 12] . Then
L[0,{1,[2;1];0}] = [LO,{L 1, [L2;L1;LO} = [10, {11, [12; 11]; 10}]

Lists can be items in a list. For example, let
A=1[[6;370];
[4;9; 2; 5] ;
[1;5; 8; 3]]
Then A is a 2-dimensional array, or more particularlyxd 8rray. IndexingA with one index
gives a list
Al = [4,9; 2;5]
which can then be indexed again to give a number.
Al2 =2

2001 October 28 Unified Algebra 17

Functions

A function introduces a local variable with two expressions called the domain and result. It i
written in the following form:

ariable domain - result]
The scope of the variable begins at the opening angle bracket and extends to the closing an
bracket. All the laws in the context of the function that do not mention the variable are applicabl
within the function, and the additional lawariable domain is also applicable within the
function. For example, the successor function

(h: nat — n+1[]
introduces local variable with domainnat and resultn+1 .

As a short form, we can omit the domain and its preceding colon when the domain is known ¢
irrelevant. For example, suppose the surrounding commentary has made it clear that the domai
nat. Then we can write the successor function in the preceding paragraph as

(h - n+10]
When the result of a function does not depend on its variable, we can omit the variable along wi
the angle brackets and colon as another short form. For example, the constant function

(h: nat - 1[]
can be written more briefly as

nat- 1
Finally, if the result does not depend on the variable and the domain is known or irrelevant, we c:
omit both the variable (and angle brackets) and domain (and preceding colon). For example, t
preceding constant function can be written

g 1

The result of a function can be a function, for example
[d: nat+1 — [h: nat - n: dxnat
This can be called a function of two variables, saying whether its first operand divides its secon
Here is a function of two variables in which the first variable is used in the domain of the second.
(h: nat —» n: (0,.n) - mxn + nl
The constant function of two natural variables
(h: nat — Un: nat — O
can be abbreviated
nat - nat - 0
or, if we know the domains from the surrounding commentary,
- = 0

A function introduces a variable that is local to the function. Those variables that appear in tF
function, and are not introduced by the function, are nonlocal to the function. Any expression me
be a part of a larger expression, and so a variable that is nonlocal to a function may be the lo
variable of a larger enclosing function, or of a smaller enclosed function. Similarly, a variable the
is local to a function may be a nonlocal variable of a larger enclosing function, or of a smalle
enclosed function.

The formal way to introduce a variable into an expression is the function, and the formal way t
eliminate a variable is function application; in other words, function application expresse:
instantiation. Functiorf is applied to (operates on) an elemenbf its domain by the notation

f x, which is pronouncedf* applied tox” or “ f of x”. For example

2001 October 28 Unified Algebra 18

X: nat - x+y[13
is a function application, and it expresses (has the same value as) the instantiation thatxeplace
in x+y with 3. Here is the Application Law. ¥ is an element oD , then
XD - RIx =R
So, replacingx with 3, D with nat, and R with x+y,
X: nat - x+yl13 = 3
Here is another example.

[d: natt1 - [h: nat —» n: dxnatll3 5 apply, since 3nat+l
= m: nat - n: 3xnat’b apply, since 5nat
= 5: 3xnat
= 1

Here is a function that can be applied to a variable number of operands.
eat = [h:nat -~ 0<I n=00 eat]
The functioneat eats operands until it is fed O, whereupon its resultis O .

Instantiation was introduced near the beginning of this paper, and there were two points explaini
how it works; now there are two more.

* Except when instantiating the Application Law, instantiation replaces nonlocal variables only
If we instantiateX: nat - x+y[l(x+y) by replacingx with y we obtain X: nat - x+y[J

(y+y) .

» Except when instantiating the Application Law, instantiation must not place a nonlocal variable
where it will appear to be local. We cannot instantiatenat — x+yli(x+y) by replacingy
with x.

The exceptions are due to the fact that the Application Law expresses instantiation.

Aside Why do | have all the words “instantiation”, “application”, “substitution”, “replacement”?
Surely | should choose one and stick toEnd of Aside

The domain of a function (domain of its variable) is obtained byztheperator with the Domain
Law:

XD - RXI=D
When we instantiate the Domain Law, the instantiation rules prevent us from repaawvith an
expression in which variablg is nonlocal.

The Extension Law says:
& of - fxO=f
This law can be instantiated by replacihgvith [y: D — fyllto obtain
XD - [y:D - fylk(=y: D - fyO
and if x is an element irD then we can apply the firs§y: D — fy[Jto x to obtain
X:D - ixO=0L: D - fy[
which says that a function in variable equals a function in variablg obtained by replacing
with y in the result expression. This is called “renaming the variable”. Sometimes renaming i
required to allow an instantiation without making a nonlocal variable appear local.

The size of a function is the size of its domain.
= oof

2001 October 28 Unified Algebra 19

A function can be conditional, and so can its operand.
fbblg)x =fxdbl gx
fxdbby) =fxdbD fy

A function can be a bunch union,
(f, g) x = fx, gx

and so can its operand.

Function application can be extended to non-element operands in either of two ways. For ea
function f , we can choose whether to apply the function even though the operand is non
elementary, or to distribute the application over the operand as follows:

fnull = null

f(a,b) =fafb
But we cannot choose both options for the same function.

Operators on Functions

The operators[] [0 + x have been defined for two binary or number operands. Following
Curry, we now define them for one function operand. is the minimum off . Of is the
maximum of f . +f is the sum off . xf is the product off . At the same time we define a new
operator 8 on one function operand: (8solutions of f ”, or “those f ”) is the values in the
domain of f such that the corresponding resultTs. Here are the laws, in whicle is an
element.

(X null - fxO0=T = OA->T)

X e - fxO = fe

Ook: AB - fxO = XA - XOOOX: B - fxO

x: 8f - gxd = OBk Df — gx<fx>TO

X null - xO0= 1 = A - 1)

Ox: e —» fxO = fe

Ox: AB - fxOO = OB A - fXOOOB: B - fxO
X 8f —» gxd0= X Df - gx<fx> L[

+null - ixd0= 0 = +A - 0)

+0e - fxO = fe

+X: AB - fxO+ +3k A'B - fxO = 3% A - fxO+ +3X: B - fxO
+X: &f - gx = 43X Of - gx<3fxt>00

xXonull - X0 = 1 = x(A- 1)

xX: e - fxOO = fe

x: AB - fxOx xBk A'B - fxO = xBk A - fIXxOx xB B - fxO
x0k: 8f - gx0 = =X Df - gx<afxt> 10

sx null » fxOJ = null = §A - 1)
8k e - fxO = e« fel> null

8k AB - fxO = & A - fxO, 8 B - fxO
8 & - gx = 8% Df - gx<afxt> L[

2001 October 28 Unified Algebra
SA-T) = A
8 A'B - fxOO = 8% A - X0 8X: B - fxOI
8Ok A - fxO, 83k A - gxJ = 8§ A - fxOgx[
8O A - X8 A - gxJ = & A - fxOgxd
& of - (x:8f) =fx[
(x:8f) = (x: of) Ofx
Ox: 8f — fxO
(A - e =€) = (A=*null)
(A - e =€) = (A% null
8(A - e) = Adelnull
X A - x:BO = (A:B)
XA - x:BO = A'B=* null)
8 A - x:BO = A'B)

20

If we have decided to distribute application of functidnover bunch union, then we also
distribute its application over solutions, as follows:

f(8xX: A - gX) = §y: fA - [A - fx=y OgxD

Let f be a function with a non-null domain. Let be any function. Ifgx varies directly with

X, then
X of - g(fx)O
x: of - g(fx)Od

If gx varies inversely withx , then

Ix: of - g(fx)O
x: of - g(fx)O

And in most instancesz and < can be replaced by =.

> g(x: of - X = g(O)
< g(Ox: of - IxO = g(of)
> g(x: of - X = g()
< g(Ox: of - IxO = g(Oof)

laws (omitting the non-null domain).

X - 0 = 41X - IxO = £

X - fx+yd = X - Ix+y = [Of+y
X - fx—yO = X - IxO~y = [Of—y
X - y—fxO = y—OX - X0 = y—[f
X - fixOyd = Ox - ixOdy = Of Oy
Ix - IxOyd = Ox - xOdy = Of 0Oy
X - fxayld = X - fxOay = Ofay
X - fxvyld = X - fixX(vy = Ofvy
X - fx<yld =2 (X - ix(ky) = I <y)
X - fx>yd > (X - Ix(>y) = O >y)
X - fx<yld = (X - fxX(ky) = (f<y)
X - fx=2yld = (X - fx(2y) = ([{f=y)
X - fxdy>z[l = OX - fX([y>z = [Ofdyb>z
x - 0 = 41 - fxO = £

X - fx+yd = X - Ix(Hy = [Of +y
X - fix—-yO = X - fx(y = Of—y
X - y—fxO = y—IOX - X0 = y—[f
X - fxOyd = Ox - fxOOy = Of Oy
X - fxOyd = OX - xOOy = Ofdy

Here are the distributive or factoring

2001 October 28 Unified Algebra 21

Dl&—»fXAyD: D&—»fXDAy = DfAy
X - fxvyld = X - Ixtvy = Ofvy
O - fx<yd = (X - fxO<y) = (df<y)
X - ix>yld = (X - Ix(>y) = [>y)
X - fx<yld £ (X - Ix[(Ey) = ({f<y)
X - fx=2yd £ (X - fx(2y) = ([df=y)

X - fx<dy>z[] = X - fX\y>z = [Of<Ayb>z

Function Inclusion

Consider a function in which the result is a bunch: each element of the domain is mapped to ze
or more elements of the range. For example,

(h: nat - n, n+1[]
maps each natural number to two natural numbers. Application works as usual:

(h: nat - n,n+113 = 3,4

Functions are sometimes classified as partial or total, and sometimes as deterministic
nondeterministic. If these classifications are thought to be useful, here is one way (althoug
nonstandard) to define them.

partial sometimes produces no result
total always produces at least one result
deterministic always produces at most one result

nondeterministic sometimes produces more than one result
By these definitions, here is a function that is both partial and nondeterministic.
m: nat - (0,.n)0

A function f is included in a functioryg according to the Function Inclusion Law:
(g = g of) OOX Dg - fx: gxd

Using it both ways round, we find function equality is as follows:
(f=g) = @f=opg) O X of - fx=gx

Let suc be the successor function on the naturals.

suc = [nat - n+10
We now evaluatesuc nat- nat. Function nat- nat is an abbreviation offh: nat - natd,
which has an unused variable. It is a nondeterministic function whose result, for each element

its domain nat, is the bunchnat.
(suc nat- nat) use Function Inclusion Law

(nat nat) O Om: nat — suc n nat]
U nat - n+1: nat’]
T
And, more generally,
(:A-B) = @A of) O O&: A-fa: BO
We can similarly show
[d: natt1l - [h: nat - n: dxnatll (natt1)- nat- bin
The functioneat defined earlier with a variable number of operands satisfies
eat nat - (0, eal
The use of bunches unified our treatment of numbers and number types; it similarly unifies ot
treatment of functions and function types.

2001 October 28 Unified Algebra 22

Let check be a function whose variable is a function.

check = [((0,..10)- int) — Om: (0,..10) - ever{fn)

even = [int - i: 2xintd
Function check checks whether a function, when applied to the first 10 natural numbers,
produces only even integers. An operand éveck must be a function whose domain includes
0,..10 becauseheck will be applying its operand to all elements in 0,..10 . An operand for
check must be a function whose results, when applied to the first 10 natural numbers, al
included in int becauseeven will be applied to them. An operand faheck may have a larger
domain (extra domain elements will be ignored), and it may have a smaller ranigeB land f:
B-C andC: D thenf: A~ D . Therefore

suc (0,..10)-int
We can applycheck to suc and the result will beL . (We are applying a function to a non-
element operand, so we ought to decide whetterck distributes over its operand. But, thanks
to the Function Inclusion Laws, the result is the same either way.)

Function Composition

Let f and g be functions such that f=@g) (f is not in the domain ofy). Then gf is the
composition off and g, defined by the Composition Laws

D(gf) = § of - X Dgll

(@hx=g(x
Because composition is associative,
f(gh = €g)h

we don't need the parentheses.

The Composition Laws let us write complicated combinations of functions and operands withot
parentheses. They sort themselves out properly according to their domains. For examp
supposef and g are functions of one variable, ard is a function of two variables. Suppose
further —¢ oh) (f is not in the domain oh), and —: D(h(fx))) (g is not in the domain of
h(fx)). Then

hfxgy juxtaposition is left-to-right
= ((hHhx gy use function composition oh f since - oh)
= (h(fx)ogy use function composition orh (f X)) g since —@: D(h(fx)))
= (h(fx) 9y drop superfluous parentheses
= h{fx @y

Operator-Function Composition

If x: D, then application yields

: D - ylk = X
so in the context of application, the function D — —y[lis identical to the operator — on domain
D . We take them to be identical also in the context of composition.f:ID)~(then

(-f) x
= (:D - y) x
= [y: D - —yO(f x)
= —(fx)

The — operator is being composed with a function. We can similarly compose any operator with
function if the operator does not operate on the function but on its result. For exanhpis,af
function whose result is a function whose result is a number, then

2001 October 28 Unified Algebra 23

(xh) x = x(h %)
xX - hxOd= O - x(hx)O
Since the operator # does apply to a function, it cannot be composed with a function.

Infix operators that do not operate on functions but on their results can similarly be composed wi
the functions. For example, ff and g are functions whose results are numberand b,

(f+g)x =fx+gx

X - X+ X - gxd= X - fx+gxdd
So the inner product of and g is x(f+g).

Since the infix operators = and : do operate on functions, they cannot be composed wi
functions. (Operator-function composition has been called “lifting”.)

Aside The following alternative was considered and rejected. It would be more uniform to sa
that all operators compose with functions, so that

(f+o)x = fx+gX

(f=gx = Fx=9%

(f:gx =(@Fx:9%
and then, for function$ and g having the same domain

x(f+g) = xX - fx+gxO inner product
((f=g) = X - fx=gxO function equality
Of.g) = [IX - fxgxd function inclusion

and so on.End of Aside
Selective Union

If f andg are functions, then

flg “f otherwiseg”
is a function that behaves like when applied to an operand in the domainf gfand otherwise
behaves likeg. The laws are:

Df|g) = of, 7g

(flg)x = tx<dx of > gx

Selective union is idempotent, associative, and composition distributes over it.

fIf =f
fl@lh) = €19 |h
(gl f=gflhf

Selective union gives us a way to express a function by listing domain-range pairs as in tt
following example:

0-2|2-1|1-0
When the domain values are textual, we have the familiar “record” or “structure” from various
programming languages; by letting the range values be bunches we have “record types”.

Limits

Let f be a function with domaimat (an infinitely long list). Function application determines the
result of applyingf to any element ohat. We now say what happens when we applio T .
Define fT by the following Limit Law:

2001 October 28 Unified Algebra 24

Obin - Om - f(men)D< fT < Oiin > O - f(me+n) 00
with all domains beingnat .

For some functiong , the Limit Law tells usfT exactly. For example,
(0: nat - 1/(n+1)(T = 0
For nondecreasing, fT =[f . For nonincreasing, fT =[f . For example,
(n: nat - 1/(n+1)d0= 0O
For some functions, the Limit Law tells us a little less. For example,
—-1< h:nat - (10 < 1
In general,
Of < fT < [Of

Now that we have definedT wheref is any function with domaimat, we can define the real
numbers. First we defingreal as follows:

xreal = (at-rat)T
Notice that nat- rat includes all functions with domaimat and rangerat , and we take the
limits of all such functions. And now

real = X xreal - 1 <x<T0O

Regrets

Alist L is very similar to the functionn: (0,..A£) — Ln[l Indexing a list is the same as function
application, and the same notatidnn is used. List composition is the same as function
composition, and the same notatiarV is used. List length is the same as function size, and the
same notation is used. It is useful to mix lists and other functions in a composition. For example
suc[3; 5; 2] = [4; 6; 3]
We can also mix lists and functions in a selective union. With functier211 as left operand,
and list [10; 11; 12] as right operand, we get
1-21|[10; 11; 12] = [10; 21; 12]
just as we defined it for lists. And L+ conveniently expresses the sum of the list. So | really
want to unify lists and functions.

Unfortunately, that would meanS[T]: [§] . Texts are lists of characters, and that law says that
“ab” “a” . So

(fa” - 0]“ab” - 1)“ab” = 0
This is not how we want a record structure to work.

Due to the Function Inclusion Law, there can be no way to express “all functions of reals”. If we
were to unify lists and functions, there would be no way to express “all lists of reals”, nor “all lists
of X" forany X. For supposéALN expresses all lists of naturals. Then

[3; =3]: [3]: ALN

Another nice unification would be bunches with functions whose result is binary. In this
unification, bunch inclusion would be “backwards application”.

x:A)=AX
And there would be no reason to keep both notations.

2001 October 28 Unified Algebra 25

Unr esolved

The following function would appear to apply to functions of reals and yield the average:
[((0,..#) »real) - +{/#f[]
What makes this example interesting is that the varibbigroduced in the function is used in the
domain ((0,..f) —real) of the variable. A function introduces a variable, in this exampland
a law, in this casef: ((0,..#f) - real) , locally. There is no reason to prevent a variable from
occurring twice in a law. But if the domain mentions the variable, there's no way to determin
what the domain is, and so no way to apply the function. Perhaps the Domain Law should be
(x: x: DX - RX) = (: Dx)
But then DX: x — 00 might give Russell's paradox.

Probability

The standard theory of probability assigns 0 to an event that cannot happen, 1/2 to an event
is equally likely to happen or not happen, and 1 to an event that is certain to happen. In a set
events in which exactly one event must happen, the probabilities sum to 1. The integral of
probability distribution must be 1 .

Perhaps there is another way to develop probablility theory based on unified algebra. Perhaps
event that cannot happen has probability an event that is equally likely to happen or not happen
has probability 0, and an event that is certain to happen has probdabilitin a set of events in
which exactly one event must happen, the average probability is 0. The integral of a probabili
distribution must be 0. In standard probability theory, if therenaejually likely events, they
each have probability &/, for finite n. But there is no way to say that an infinite number of
events are equally probable. In this proposed new theorgqually likely events each have
probability 0, even ifn is infinite.

Perhaps the new probability space is related to the logarithm of the old space; essential
probabilities are replaced by information content. The hope is that the complicated formulas fc
distributions in the standard theory can be simplified by transforming the space of probabilities.

Conclusion

We have presented an algebra that unifies numbers with booleans, types with values, functi
spaces with functions. There is no loss of structure, just loss of duplication. This is mathematis
by design. Like any design, it is neither right nor wrong; the criteria for judging it are usefulnes:
and elegance.

When we apply a formalism to describe and reason about some phenomena, we may find tha
works quite well for a certain range of observations, but less well outside that range. In thi
formalism, whenD represents a finite class of objects dBxl is a binary expression, we find
that (I D - Bxis quite useful for saying “There exists an object, let's call,iin the class of
objects represented by , such thatB is true of x.”. But when D represents an infinite class

of objects, [IX: D - Bxdiffers from the traditional mathematical idea of existence. One way to
resolve the discrepancy is to redesign the algebra, sacrificing simplicity and elegance, to attempt
fit the traditional mathematical idea of existence. Another way to resolve the discrepancy is t
change the traditional mathematical idea of existence to fit the algebra, or even abolish the idea
mathematical existence altogether. | recommend the latter.

2001 October 28 Unified Algebra 26

Acknowledgments

| thank Rutger Dijkstra, Wim Hesselink, Jim Grundy and David Barton for catching some errors
Remaining errors are, of course, for the purpose of testing the reader. | thank Dimitrie Paun fi
discussion.

Refer ences

[0]
[1]

[2]
[3]

J.Grundy: “Transformational Hierarchical Reasoningé Computer Journa39(4) 291-
302, 1996 May

E.C.R.Hehner: “from Boolean Algebra to Unified Algebra”,
www.cs.toronto.edu/~hehner/BAUA.pdf

E.C.R.Hehnera Practical Theory of Programminépringer-Verlag 1993
C.A.R.Hoare: “a couple of novelties in the propositional calcul@®itschrift fur
Mathematische Logik und Grundlagen der Mathematii?), 173-8, 1985

